M27. Inverse Problems in Scattering Theory and Geometry

Inverse scattering problems and geometrical inverse problems are classical and active subfields of inverse problems. The aim in inverse scattering theory is to recover information about some unknown medium or potential function from measurements conducted far away. Correspondingly, often in geometrical inverse problems the measurement is conducted at the boundary of a region of interest. Both fields have recently seen many breakthroughs, especially in the non-linear setting.

This mini-symposium aims to collect both experts and newcomers from different fields studying scattering theory and geometrical inverse problems. Both theoretical and numerical sides of the problems are welcome.

Organizers:
Matti Lassas, University of Helsinki, Finland, This email address is being protected from spambots. You need JavaScript enabled to view it.
Teemu Tyni, University of Helsinki, Finland, This email address is being protected from spambots. You need JavaScript enabled to view it.

Speakers (in alphabetical order):
Spyros Alexakis, University of Toronto, USA, This email address is being protected from spambots. You need JavaScript enabled to view it.

Tracey Balehowsky, University of Helsinki, Finland, This email address is being protected from spambots. You need JavaScript enabled to view it.
Determining a Lorentzian metric from the source-to-solution map for the relativistic Boltzmann equation

Jinpeng Lu, University of Helsinki, Finland, This email address is being protected from spambots. You need JavaScript enabled to view it.
Stability of the Gelfand inverse boundary spectral problem

Petri Ola, University of Helsinki, Finland, This email address is being protected from spambots. You need JavaScript enabled to view it.
Scattering of electromagnetic waves from negative media

Teemu Tyni, University of Helsinki, Finland, This email address is being protected from spambots. You need JavaScript enabled to view it.
Inverse scattering problems for the biharmonic operator